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ABSTRACT 

It is pointed aut t ha t  insight i n to  the threshold region of 

electron-atom ionization can be gained by examination of the nature 

of the  doubly excited states of the compound ion. A study of these 

states for  H- has been in i t i a t ed  with two types of var ia t ional  wave 

f b c t i o n s .  

from the nucleus; the other, y,,, has one electron a t  a very much 

fa r ther  distance such that it sees the dipole potential  caused by the 

inner electron and the  nucleus. Both f’unctions a re  constructed t o  be 

One, yw, has the  two electrons a t  roughly equal distances 

eigenfunctions of the  operator %, which projects out d l  s t a t e s  of 

the t a rge t  of principal quantum number less than N, and renders the 

energy subject t o  a minimum principal. 

fo r  which yw yields a lower energy then yD is  proportional t o  N Y  then 

an extrapolation argument shows that  the threshold yield curve 

If the  number of states 
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w i l l  be effectively proportional t o  E ( 3  - ~ " 2 .  

have been done t o  N = 5 for Y and N = 9 for  y . 
lowest of the 'yw s t a t e s  is lower than the csrrcsponding yD state. 

The resul ts  suggest y i n  the range 0 < 

on Wannier' s theory of ionization a re  made. 

I. INTRODUCTION 

h l c d a t i o n s  

Only the 
W D 

I 1/2. Some comments 

The theory of l o w  energy electron impact ionization of atoms 

by electrons i s  fraught w i t h  d i f f i c u l t i e s  from begining t o  end. 

The d i f f i cu l t i e s  a re  both mathematical and conceptual i n  nature. 

The mathematical d i f f ' cu l t ies  derive from the long range nature of 

the Coulomb potent ia l  combined w i t h  the  in t r in s i ca l ly  three-body 

nature o f t h e  wave f'unction i n  the f i n a l  s t a t e .  In  almost all 

cases, however, these problems are  re la ted t o  conceptual questions 

of immediate physical significance. If the  two electrons come away 

fram the nucleus o r  residual ion (considered an i n f i n i t e l y  heavy 

point charge and always referred t o  as the  nucleud w i t h  approximately 

equal and opposite veloci t ies ,  then it is a reasonable argument t h a t  

each electron sees the nucleus d i r ec t ly  and that classical. mechanics 

can be applied'. The point here, of course, is the v i r t u a l  ident i ty  

of Coulomb scat ter ing i n  c lass ica l  and quantum mechanics and the f a c t  that 

the classical  approximation becomes more exact as the e n e r a  gets  lower. 

If on the other hand the electrons come off w i t h  quite d i f f e ren t  

velocities, the va l id i ty  of c l a s s i ca l  mechanics i s  a much more 

questionable i t e m .  Here the quantum mechanical argument is  that the  
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inner electron may shield the outer electron from the nucleus 

thereby making the potential  it sees shorter range than Coulombic. 

In %hat case i ts  behavior may not be governed by classical  

mechanics and the c lass ica l  approximation may ge t  poorer as the  

energy is lowered". 

It is  the purpose of t h i s  paper t o  examine some of these 

questions from a consistently quantum mechanical point of view. 

We sha l l  attempt t o  avoid questions concerned with the controversiaX" 

asymptotic form abuve threshold3' * by considering the process as  

a continuation of r ea l  or v i r tua l  processes b e l w  threshold. It 

a l s o  allows calculations t o  be done in  a fairly unambiguous way. 

W e  believe t h a t  t h i s  i s  the most important aspect of our work, for  

if any question be raised concerning the  var ia t ional  forms of our 

wave f'unctions, the way has been opened for  other forms t o  be proposed 

and tes ted on the impartial balance of quantitative comparison. The 

one question that t h i s  approach can probably not answer is  any subtle 

questions of analyt ic  continuation from negative t o  posit ive energies. 

W e  sha l l  be more detailed concerning what e f fec ts  we believe t h i s  can 

have i n  Section 111; for the present it is only relevant t o  note that 

the  one advantage of the Coulomb force is  tha t  the continuum solution 

merge continuously with the discrete solutions. Thus i f  we correctly 

describe the  major physical si tuations tha t  can occur below tthreshold, 

then we can be reasonably sure that w h a t  we extrapolate them t o  be 
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must be substantially correct.  

What are tkE physical processes which extrapolate t o  

ionization? They are  of two types: (1) Ine las t ic  processes in 

which the o rb i t a l  electron is  raised t o  a highly excited state N 

with N f ina l ly  going in to  cmtinuum. ( 2 )  Double excitations in 

which both par t ic les  can be considered simulttxieously caught in an 

excited "bound" s ta te ,  a l s o  characterized by the  principal Quantum 

number N, where again N f i n a l l y  goes into the  continuum. Whereas 

the former a re  r e a l  both i n  the  sense t h a t  they occur a t  energies 

above the energy necessary t o  excite the Nth l eve l  and the  processes 

correspond t o  rigorous time lndependent solutions of the Schrtklinger 

Rquation, the double excitations processes can be considered vir tual  

i n  as much as they occur below threshold and they do not correspond 

t o  rigorous time independent solutions of the Schrbdinger equation5. 

Nevertheless they do occur,and they can have a profound ef fec t  on the 

scaktering both below and above the thresholds i n  question. 

Our approach w i l l  be t o  use the double exci ta t ion processes t o  

guide us i n  the choice of final s t a t e  wave functions that w e  use, 

but the actual derivation of t he  threshold l a w  w i l l  be carr ied out 

v i a  (1). 

and in  Section I11 with the derivation of the threshold. 

lh Section I1 w e  deal w i t h  doubly excited state calculatlons 

One of the  

forms of the doubly excited wave f'unction has been motivated by 

Wannier's theory of ionization1 according t o  which the  threshold l a w  
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i s  dominated by processes in which the energies and the radial  

distance of t he  escaping electrons a re  not too different  f rm each 

other. 

aut that h i s  derivation cannot be ju s t i f i ed  in a completely classical  

theory of electron-atom (or ion) ionization. 

In Section IV we discuss h i s  theory a l i t t l e  more and point 

It turns out that the scattered par t ic le  must see a t  the very 

least an r'2 potential .  

normalization factor of the scattered wave which makes it more l i k e  

a Coulomb wave. This normalization factor i s  derived i n  the appendix; 

but it is a l so  indicated there tha t  the normalization factor notwith- 

standing, the ionization in such a potential  should have an energy 

power dependence less dominant than t h a t  of a pure Coulomb wave. 

11. DOUBLY EXCITED STATES OF H- 

This causes a change i n  the continuum 

W e  shall calculate doubly excited ( i. e.  , autoionization) s t a t e s  

of H-. 

first it is the simplest negative ion, but more important the eigen- 

functions of the target  atom are knom exactly and therefore we can use 

the &-operator technique '' without approximation. Also following 

Wannierl we sha l l  deal w i t h  only t o t a l  S-states i n  the bel ief  that 

threshold law cannot be altered i n  form by higher angular momentum 

states. 

There are two reasons for dealing with t h i s  negative ion: 
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The two wave f'unctions which we use ares: 

The physical meaning of '4';) i s  eas i ly  understood, it describes 

the two electrons in  duubly excited s t a t e s  a t  roughly equal rad ia l  

distances from the nucleus. (We asume v N ) .  The functions 

are r times the radial hydrogen wave M c t i o n .  

correlations indicated by the electron-electron repulsion are taken 

up by the l inear  var ia t ional  parameters C 

effect ively f ree  and one is  determined by normalization. 

it is clear  t h a t  the calculation w i l l  make them such as t o  concentrate 

the electrons on opposite sides of the nucleus. 

that for  neither par t ic le  does t h i s  f'unction contain s t a t e s  of 

hydrogen w i t h  principal quantum l e s s  than N. I.e, for  i = I, 2 

The angular 

of w h i c h  N - 1 are  
V N A  

Physically 

It i s  also clear  
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Thus the function i s  an eigenf'unction of the % operator' and 

var ia t ional  calculations w i l l  give eigenvalues which i f  they l i e  

below the Nth state of the hydrogen atom w i l l  correspond t o  

resonances i n  the  e l a s t i c  and inelast ic  channels. 

Although the physics of yD (NJ) is  a l so  readily understood, the 

mathematics needs some explanation. The following i s  a precis of 

Mittleman' s10 generalization t o  a rb i t ra ry  N of the  analysis which 

Temkin and Walker11 have given for the N = 2 state. Let us start 

with the following ansatz for  the closed channel wavehc t ion :  

The functions (r) are  t o  begin with undetermined ftmctions. [The 

fac tor  (-1) 

coefficient by which Ysn(Ql) and Y a - 
If one varies the  

then one arrives at coupled d i f fe ren t ia l  equations whose longest 

%a 
i s  the  essent ia l  part of the  Clebsch-Gordan 

(*2) couple t o  form P (cos e12) I .  a 
i n  the expression for expectation of the energy, %a 
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range 

may be writ teg 

terms are of the order r'2 and t o  that order the equations 

and@(N' is a tridiagonal %a U'N) i s  a column vector of the  

symmetric matrix whose elements are  given by: 

&a, a' + 1 4a2 - 1 + 3NA 

Introducing the transformation 

V ( N )  (N)U(N) (2.7) 
= B  

such t ha t  B (N)-1d3(N)B(N) is diagonal, we find that the components of 

the  column vector V(N) sa t i s fy  the equation 

t €mJ]vTj(r) = 0, j P 1, 2, -- 9 N, (2.8) 



- 9 -  

where b a re  the eigenvalues of L e t  be the associated 

eigenvectors, then the f’unction of Eq. (2.4) takes on the  

form of Eq. (2.2) and acquires an additional “quantum” number 3 which orders 

the sequence of eigenvalues of B(N) and t h e i r  corresponding eigenvectors. 

NJ a3 

O f  the  N eigenvalues b a certain number, j = 1, 2, --, JD, 
Nil 

w i l l  be negative and fo r  those functions the equations w i l l  asymptotically 

contain an a t t r ac t ive  rm2 potential. 

w i l l  contain m i n f in i t e  number of negative eigenvalues which t o  

For each N and 3 the equations - 

an excellent approximations a re  related by10 

where 

(2.10) 

The solutions of those equations a re  Hankel flmctionsll 3 12 

( i l e N j  11j2r) which asymptotically approach exp(-l “3 I1j2r). 

A t  short  distances equation (2.8) becmes al tered and essent ia l ly  

non-local in character. In fact  the a t t r ac t ive  r’2 potential  must 

became l e s s  singular, fo r  the r‘2 salutions are not regular1.y behaved 

a t  the  origin. 
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For variational purposes we have taken 

(2.11) 

Ln order that  Yb ( N J )  be an eigenfunction of it is necessary that 

Note that the operator is  symmetric7. Although the form of 
- 

(NJ )  as it stands appears t o  contain no bound states of lower N yD 
for the target  par t ic le  ( r z ) ,  it might contain lower states in the 

exchanged coordinate (3 ) . 
subject t o  a minimum principle the poss ib i l i t i e s  of ordinary 

exchange ine las t ic  scattering frm a state lower than N must a lso  

be excluded. Eqs .  (2.12) m a n t e e s  this t o  be the case. They 

are a set of q - 1 l inea r ly  independent equations where 

cv 

In order that the  calculation be 

If the v 

izat ion all the coefficients a re  unique f'unctions of a. Thus 

for  variational purposes the function yD ('3) contains only one 

( r )  contains exactly q terms, then together with normal- 
N3 
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variat ional  parameter, a, as opposed t o  yl(N) which, as was stated,  

contains N - 1 parameters. 
W 

It i s  very important ID realize,  because 

the W and D calculations are  based on the same &N operator, that the  

s h i f t s  A 

of the respective energies that w i l l  be made (Table 111). 

a re  the same ani therefore can be omitted i n  the comparison Q 

The matrices B(N) were inverted for  a l l  N = 2 t o  N = 100. 

The number of negative eigenvalues i s  c lear ly  linear with N as 

i s  evident from Figure 1 i n  which JD is plotted as a function 

of N. I n  f ac t  it is quite certain that 

1 JD = 5 N - (lower order i n  N),  (2.14) 

where the term in  brackets may very w e l l  be logarithmic. 

eigenvalues themselves appear t o  go up quadratically with N. 

Selected values are given i n  Table I. 

t o  be proportional t o  N and independent of j for  the lower values. 

In f ac t  the b 

formula of the form: 

The 

The differences are seen 

can be f i t  t o  a reasonable approximation by a 
N j  

Some f e e l  for  the eigenvectors B(N) can be gleaned from RJ 
Table 11. 

constant I’d2 the eigenvectors are  f a i r l y  independent of j for  

small 

There it can be seen tha t  aside from a normalization 

and that they get extremely small fur l x g e  $ ns  long as 

j is  small. For large j they lend t o  osc i l la te  and they are  all 

of the same order of magnitude. 
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The significance of these properties w i l l  emerge in  next 

sections i n  w h i c h  we u t i l i z e  these properties t o  derive an effect ive 

threshold l a w .  

resu l t s  of the var ia t ional  calculations. The resu l t s  themselves 

are  swnmarized in  Table 111. 

111. IMPLICATIONS FOR THRESHOLD IONIzclTION 

We shall a l so  discuss there the significance of the 

It may appear t ha t  the var ia t ional  wave functions we have 

used, i n  particular yw, are overly r e s t r i c t ive  and that specif ical ly  

i f  we had used shielded Coulomb radial wave functions we w o u l d  have 

found more energies of the two Coulomb type (%) lower than t h e i r  

dipole (ED) counterpwts. 

Table 111.) 

reasons. 

therefore one has more freedom t o  simulate the effects  of shielding 

should th i s  have been required.. 

we have varied v in Yw away from N. 

described as making the mean radial distances of the electrons be 

s l i gh t ly  different  frcm each other, and thus t o  give p a r t i a l  shielding 

more room in which t o  operate. The r e su l t s  a re  summarized i n  Table TV. 

It can be seen t h a t  in only one case does it reduce an eigenvalue 

( v  = 10, N = 9 )  and there only the lowest one (which was lower 

than 5 anyhow). 
them, and i n  f ac t  i n  only one case does the second eigenvalue remain 

bound. 

(This number is indicated by Jw i n  

We do not believe t h i s  t o  be the case f o r  the following 

The number of var ia t ional  parameters in yw goes up as N, 

To t e s t  t h i s  point even fur ther  

The e f f ec t  of t h i s  change can be 

Its ef fec t  on all higher eigenvalues is  t o  r a i se  
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Furthermore it must be added that the f’unction y ( fo r  v =N) W 
is  expl ic i t ly  symmetric whereas y i s  not. Although we do not 

expect t h i s  t o  be a s ignif icant  factor f o r  large N, Table I11 

shows tha t  it can have a significant lowering e f fec t  for  small N. 

Finally we r e i t e r a t e  that yb only depends on - one var ia t ional  

parameter. 

D 

Thus t o  the extent that  t h i s  calculation i s  biased, 

it predominantly favors the two Coulomb functions yw. 

intent ional ly  done t o  of fse t  any crit icism that we were in tu i t ive ly  

This is 

drawn t o  the shielding approximation2. 

Thus it is the calculations themselves which convincingly 

In other words in demonstrate t h a t  the y,, functions daninate. 

double exci ta t ion the electrons tend t o  be a t  great ly  dissimilar 

distances from the nucleus. For example the second autoionization 

s t a t e  of the N = 5 calculation has a mean radius of r2 a t  approxi- 

mately 37 a whereas Fl = 136 ao. This in turn can be described 

a s  the d i r ec t  effect  of shielding of the outer electron from the 

N 

0 

nucleus by the inner electron2. 

The threshold l a w  fo r  ionization, however, will be determined 

by those f e w  s t a t e s  i n  which the electrons emerge a t  comparable 

distances from the  nucleus. The present calculation clear ly  shows 

that such equal eneray events can occur. In order t o  extrapolate a -- 
threshold l a w  fram the present r e su l t s  we shall proceed as f o l l o w ~ ’ ~ .  

To every two-Caulamb autoionization s t a t e  below the Nth threshold 
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Mth threshold in which the inelastically scattered particle w i l l  

also be described by a Coulomb wave. '&is wave f'unction may be 

written 

The index j here labels the state of the Yw calculation whose 

energy is lower than the corresponding j state of the yD calculation. 

In general then 

Although for the results presented in Table I11 Jw s 1, 

be assumed that as N gets larger, Jw will also. 

that asymptotically for large N, Jw can be represented as 

it must 

We shall assume 

The function %j, however, is an inelastic scattering wave 

function, and 5 is wave number of the inelastically scattered 
I 

I wave. The cross section for excitation of the Nth state is 
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where Gi is  the i n i t i a l  s t a t e  

I 

and V i s  the  interaction: 

2 2 v = -  - -  
rl r12 

(Rydberg units a re  used throughout). 

We define the  yield t o  a group of s t a t e s  i n  the v ic in i ty  of the 

Nth s t a t e  as Q (not t o  be conf’used with the projection operator 

: 

Ncm if the energy of the hydrogen atom is label led w(N) ,  then 

1 w(N) = - - 
N2 Y 
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t&e t o t a l  energy being given by 

E = k N 2 + w  (3 .W 

When N is  large, we can replace the sum i n  (3.7) by an integral: 

The matrix element i n  (3.4) can be writ ten expl ic i t ly  

L- > 

1 4  3/2. The normalization factor of % is  proportional, t o  N- 

Since there are N terms in 

Table 11, must be proportional t o  N- 1/2. me normalization of 

F($rl) a t  the origin, corresponding t o  u n i t  current a t  Fnfiniw 

i s  $- 'I2; the  sum of integrals over a converges very rapidly 

and is quite independent of the upper l i m i t .  We therefore have 

a 
(N) the  coefficients %aJ l ike the Baj , w, 
14 , 

13 



We shall assume that the  dependence on j f o r  N large is  

secondary, as w i t h  the coefficients b 

the sum Over j i n  (3.4) contributes15 a factor  Jw. 

then leads t o  

of Eq. (2.15) so that  

Eq. (3 .9 )  
Nj 

- 1/2 Using ( 3 . 3 )  for  J ~ ,  inverting ( 3 . b )  i n  the form N a I w I ? 

and proceeding in to  the continuum wherein w is  posit ive and 

0 5 w 1s E defines the  range of integration, we find that 

0 
J 

Thus f i n a l l y  

3-v Q = E  2 

I n  order t o  say something about the value of ,,, we have 

plot ted i n  Fig. 2 the r e su l t s  we have obtained as a function of N. 

The so l id  straight line i s  the same as that i n  Fig. 1 i n  the 

r e s t r i c t ed  range of N. 

of the squares; although it looks  smewhat a r b i t r a r i l y  drawn here, 

It represents J,, and therefore i s  an average 
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Fig. 1 shows that when one goes t o  larger  N there i s  essent ia l ly  

no ambiguity i n  it. Similarly the curved l i n e s  a re  intended t o  

represent an average through the open c i rc les  (J vs. N) . 
are  not enough open c i rc les  t o  d l o w  such a curve unambiguously 

There W 

t o  be drawn, however as with JD we expect that going t o  larger  N will 

allow t h i s  curve t o  be essent ia l ly  uniquely continued. The l imited 

resu l t s  do seem t o  f i t  be t te r  with the smaller f ract ional  value of 

y. 

N. D I S C U S S I O N  

Further discussion is  reserved for  the next section. 

L e t  us examine some of the assumptions t h a t  have gone in to  the 

derivation of Eqs. ( 3 . 1 3 ) .  Aside from the analyt ic  continuation 

in to  the positive energy danain, the biggest assumption concerns the  

summation over j i n  (3 .4 ) .  We have indicated i n  footnote 15 t ha t  

the only error this could reasonably cause i s  an increase in  the 

may 
exponent i n  (3.1%). To t h a t  extent the exponent 

be a lower bound on the exponent, which would be quite sa t i s fac tory  

fo r  our purposes. We believe, however, that it i s  more accurate 

than that. 

fran ( 3 . U )  t o  (3.12) together w i t h  the r e s t r i c t e d  analyt ic  form used 

t o  represent JAN) may have l o s t  more subt le  energy dependent factors  

such as log E or osc i l la t ing  factors .  

The process of analyt ic  continuation w h i c h  is  used i n  goin@; 

From most p r a c t i c a  points 

of view logarithmic terms are not important, since they are ccsnpletely 

dwarfed by the parer dependent factors;  i f  the factors  are oeamat ing ,  

then we would expect (3.13) t o  describe the envelope of the CUrVe. 
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Tne smallness of Jw i n  the present calculation might be i n  interpreted t o  

mean e i ther  t h a t  ,, i s  small or t h a t  the constant of proportionality i s  

small i n  ( 3 . 3 ) .  

our resul ts ,  fo r  otherwise one w o u l d n ' t  have expected J W ( N )  t o  be 1 a t  N = 3 

and then t o  remain there t o  a t  least N = 7. 

Jw only t o  become 1 a t  a la rger  value of N. 

agreement of Jw with a fract ional  power dependence i n  Figure 2 appears t o  f i t  the 
l imited r e su l t s  so naturallv. 

2 for  N g 9. 

We believe that it is  the former which is  more suggested by 

Rather one would have expected 

It is for  t h i s  reason that the 

Note also from Table I11 tha t  Jw cannot exceed 

Nevertheless it w i l l  c lear ly  require much la rger  N i n  order fo r  a precise 

value of t o  be determined. Although we a re  i n  the process of extending 

t h i s  calculation, we can not promise that  r e su l t s  w i l l  be forthcoming soon. 

It w i l l  require considerably more numerical sophistication t o  avoid overflow 

and cancellation of s ignif icant  figures. (The computer is an I224 360-91 w i t h  

approximately 15 s ignif icant  figure accuracy. ) 

On the  basis of Figure 2 we would estimate 0 < s 1/2. Indeed the most 

l i k e l y  a l te rna te  poss ib i l i ty  i n  our opinion w o u l d  be a logarithmic increase 

of Jw with N, 

This would change the form of the threshold l a w  t o :  

Although we think it i s  unlikely, OUT r e su l t s  a r e  not extensive enough 

t o  rule out Wannier' s1 threshold law. (This would correspond t o  0.75. 

A l i n e a r  theory4 ,, = 1 seems d is t inc t ly  improbable i n  our opinion). 

theory, which has recently been revived by Vinkalns and GailiG.slB , 
is  based on a rather  b r i l l i a n t  analysis of the c lass ica l  

This 



orbi t s  (3.e. solutions of Newton's equations) which describe two 

electrons emerging f r o m  the v ic in i ty  of the nucleus and not being 

caught again. 

greater than zero that the solutions are of two kinds: 

Basically Wannier finds for E zero or s l igh t ly  

where A r  i s  the  difference of the rad ia l  distances of the two 

electrons fran the nucleus (assumed fixed and of charge Z) and 

r is  the mean radius: 

and 

v =  
42 - 1 

(4.3) 

The f i rs t  type of solution (4.la) can ex i s t  even a t  E = 0,and it 

corresponds t o  Particles appearing a t  in f in i ty  w i t h  equal (necessarily 
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zero for  E = 0) speeds. 

t o  exis t  for  E > 0, thus the  threshold dependence (increase i n  

the number of solutions) is  determined by the increase w i t h  E 

of solutions of the second kird (4.lb). 

i n  which th& two electrons come off with s l i gh t ly  different  energies. 

Wannier' has shuwn t h a t  the cmtribution of these t o  Q is proportional 

t o  C2 i t s e l f .  

a s imi la r i ty  principle whereby i f  

Geometrically similar solutions continue 

These correspond t o  events 

To get  the  dependence of C2 on-E Wannier appeals t o  

is  a solution of Newton's equations fo r  energy E, then 

a r e  (geometrically similar) solutions for  energy E' = BE. The 

solutions (4.lb) can be written as an expl ic i t  f'unction of time 

using the solution of jo in t  motion 

r a t  213 , (4.5) 

which i s  val id  when E << Z r -  '. 
inserted i n  (4.lb) (which i t s e l f  i s  valid only when A r << r. ) . 

This can then be consistently 
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maX I' 

Letting C 2  

escape'' a t  energy E, one finds that the corresponding solutions 

(4.lb) can be writ ten: 

(E) be the  maximum value of C2 which leads t o  double 

Applying (4.4b) then leads t o  the conclusion 

In Eq. (4.6) the (quasi ergodic) assumption has been made that a l l  

i n i t i a l  conditions for  par t ic les  entering the emergedt zone a re  

essent ia l ly  equally probable. 

then t ranslates  i t s e l f  i n t o  

From the  remark above Eq. (4.4a) t h i s  

which i s  Wannier' s threshold law ' .  

The key assumption i n  t h i s  theory, i n  our opinion, is  expressed 

in  Eq. (4.6). 

j u s t i f i ed  in a s t r i c t l y  c lass ica l  theory of t he  whole ionization 

process. 

average of events in which the o rb i t a l  pa r t i c l e  is  i n i t i a l l y  bound. 

(Radiation damping is  necessarily excluded). The question one asks 

We wish t o  show f i rs t  tha t  t h i s  assumption cannot be 

In that case the cross section emerges as  a s t a t i s t i c a l  
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i n  ionization is  w h a t  happens as the energy of the impinging par t ic le  

increases, the character is t ics  of the bound par t ic les  remaining the 

same. 

w i t h  energy does not satisfy the s imilar i ty  principle, Eqs. (4 .4) .  

Newton's equations In  that case cover the whole col l is ion process. 

In other words the variation with energy of the i n i t i a l  condxon 

But 

In 

- -- ---- 
- -- - 

other words if  the orbi ts  corresponding t o  the solutions (4.1) be 

traced backward in time, it w i l l  be found t h a t  the overwhelming majority 

of them originate i n  t ra jec tor ies  in which the  two electrons were 

or iginal ly  approaching the nucleus from inf in i ty .  These a re  i n i t i a l  

conditions that must be excluded even from the most general type of 

dis t r ibut ion ased t o  describe the real i n i t i a l  conditions. Thus we 

conclude that from a completely classical  point of view the dis t r ibut ion 

of c2 (mx)(E) does not necessarily obey (4.6). 

very sensit ive function of E (near threshold) and/or the r e su l t  may 

not depend on C2(E) alone but on C, as well; it may a l so  depend on 

the s t a t i s t i c a l  dis t r ibut ion that one chooses t o  describe the i n i t i a l l y  

It may be a very 

bound orbi ts .  

calculations, do not r e v e a l 7  the Wannier threshold l a w .  

1% is, then, perhaps significant t ha t  c lass ical  monte-carlo 

The same objection cannot - a p r i o r i  be raised against a quahtum 

mechanical coll ision. For i n  that case the concept of an individual 

o rb i t  does not apply throughout the col l is ion process. Nevertheless 

the above consideration does raise the  likelihood tha t  the probability 

with which par t ic les  emerge into the c lass ica l  zone may a l so  be a 

high3.y sensit ive fmciiuii si E. We he1 i w e  that t h i s  i n  fac t  i s  the case, 
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since even i f  one Cannot speak i n  terms of orbits,  the Hamiltonian 

does remain the same throughout the col l is ion.  The assumption 

would  be more ju s t i f i ed  in our opinion i n  the problem of the 

threshold production, say, of two negatively chargedhadrons by 

nucleon coUisions with nuclei. In that case the short range in- 

teractions only come in to  operation i n  the quantum mechanical zone, 

and they are s o  strong and complicated that they can legit imately 

be expected t o  make tk f i n a l  state completely oblivious t o  the 

i n i t i a l  s ta te .  

In  addition t o  this quasi-ergodic assumption there remains the 

question of t h e  va l id i ty  of the c lass ica l  theory. 

d i f f i c u l t  question whicIi hus 1101; been def in i t ive ly  answered. 

believe that i n  the ioriization of atoms by electrons the theory does 

have some va l id i ty  i n  the region (Ar/r) << 1. 

difference i n  t h e  t w o  radial distances gets large,then we believe that 

quantum effects (shielding) w i l l  have a profound role2. 

rer;ults tend t o  bear out this reservation. 

This is a very 

We 

However *en the 

The present 

Finally we mention the experimental s i tuat ion.  Although an 

experiment can never prove a threshold l aw,  the  experiment of McGawan 

and Clarke has convincingly shown that there  is  some nonlinearity 

i n  the e - H ionization curve between threshold and 0.4 e V .  For if 

there were not then the measured posit ion of the f irst  resonance i n  

e - H e la s t i c  scattering 

1 8  

1 9  
w u u l d  not coincide w i t h  essent ia l ly  pre- 
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cision calculations, which i n  o w  opinion can not seriously be 

questioned. In  the  region 0.05 < E  < 0.4 eV McGowan and Clarke 

f ind very good agreemerrt w i t h  Wannier' s law, but it is  

perhaps (perhaps because the experiment is hardest there) s ignif icant  

t h a t  below 0.05 eV the y ie ld  curve does appear more nonlinear. Brion 

and Thomas2o i n  e - He ionization a l so  f ind a yield curve which 

appears t o  be more nonlinear t h a n  Wannier's law. 

of nonlinearity is  much greater there, this may provide a be t te r  

experimental t e s t  of the theory. 

Appendix 

Since the region 

In  t h i s  appendix we sha l l  derive the  normalization factor for 

a par t ic le  scattered i n  an a t t rac t ive  r-2 potential .  

estimate i t s  effect  on the ionization threshold. 

We sha l l  a l so  

The ine las t ica l ly  scattered wave s a t i s f i e s  the equation 

It 

t h  

is important that t h i s  equation exclude regions near the origin; 

s s evident frm the general solution of (Al) 
21 
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which osc i l la tes  in f in i te ly  rapidly (and thus is unacceptable) 

as r 4 0. QlNj is given by 

U s i n g  the asymptotic form of the Bessel f’unction for 

in  ( A 2 )  gives 

>> a N3 

We demand that f ( r )  be normalized t o  uni t  current, so that 
N J  

where C is independent for  $. Comparison of (A>)  and (Ah) shows 

that A and B are  proportional t o  q / 2  

On the other hand A and B must a l so  be related t o  the solution 

for smaller vglues of r. 

(Ah) in  a region where 9 << 0’Nj, but where the r’2 potent ia l  is  s t i l l  

operative. ”he function f 

argument expansion2’ of the Bessel flrnctions. I.e.,  f o r  << cyN3 

To get  t h i s  r e l a t ion  we must first rewrite 

( r )  can there  be approximated by the S m a l l  
N J  
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but r > ro  

The radius a t  which the r-2 potential is no longer operative is  

defined as ro. 

the solution for  whatever ( i n  r ea l i t y  very complicated and nonlocal) 

potential  does ex i s t  as  

Within th i s  radius we assume that we can represent 

The quantity 17 is desired normalization fac-or. 

by equating the  logarithmic derivative of (A6) and (A7)  ar r = ro. 

One finds t o  an excellent approximation 

It can be determined 

where 
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I n  order t o  estimate the effect  of this on the ionization 

it is necessary t o  have some idea of the s ize  of r . A very 

reasonable estimate of it is that radius a t  which the outer electron 

is  comparable t o  the mean radius of the inner electron i ? ~ .  

be smaller for then i k  would no longer be the outer electron.) But 

fo r  a hydrogenic atom i n  the N t h  s t a t e  F2 a N2, thus it is clear that  

as N gets large ro must also, hence 

0 

(It cannot 

, 4 2  
Before proceeding l e t  us note that for  a f i n i t e  N the factor  % 
i n  (A8) or (AIO) i s  the same as one would have for  a pure Coulomb 

wave. It is t h i s  factor which is d i rec t ly  responsible fo r  the f i n i t e  

threshold behavior i n  electron impact excitation of hydrogen. 

simple fact  which is the Laplicit basis of the or iginal  derivation 

of th i s  resu l t  by G a i l i t i s  and Damburg21 i s  somewhat obscure 

i n  t h e i r  paper as a r e su l t  of t h e i r  very elegant and very general 

This 

. 

mathematical procedure. 

To calculate the e f fec t  on the ionization we must replace F ( V l )  

i n  (3.1) by Tf ( r l )  i n  view of the f ac t  t h a t  the dominant contribution 

t o  the matrix element comes from r2 small and rl comparable t o  r2. 

In t h i s  case the sum (3.4) must be extended from j = 1 t o  j = JD. 
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F i w e  Captions 

Figure 1. JD vs . N. 

only on the integers. 

Both JD and N a re  def b e d  

Figure 2. Solid s t ra ight  l i n e  is  JD vs. N 

representing the squares. The other 

m v e s  a re  various analytic f i ts  of the 

open c i rc les  t o  represent Jw. The con- 

s t a t  of proportionali ty has been chosen 

t o  be unity. 
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N3 
Table I: Selected values of -b 

J \N(JD)  lO(4-1 m ( 8 )  30(13) 

1 262 1123 2554 
2 187 971 2355 
3 116 822 2128 
4 47.4 676 w 5  

533 1684 
1466 

5 
6 393 
7 
8 
9 
10 
11 
12 
13 
14 
15 
1 6  
17 
18 
19 
20 
21 

256 1251 
122 1039 

831 
625 
423 
225 
29.3 

4646 
4339 
4035 
3733 
3435 
3140 
2847 
2558 
2271 
1988 
1708 
1431 
1157 
886.3 
619.0 
355 - 2  
9.472 

7307 
6922 
6541 
61.62 
5786 
5413 
5043 
4676 
4312 
3951 
3593 
3238 
2886 
2538 
2192 
1850 
1511 
1175 
842.7 
513.7 
188.2 
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Table 111: Comparison of Energies ( in  ryd) . 

? 
N 1 ! JD a ED 

- .00030 

> o  

- .00345 

- .0014 

--.-I--. ----..~.- - .  ..................................... ............ .....-.. . . . . . . . . . .  

8 3 
s2 

> o  .... 
---.- ..-, -... L .... IS'.% ...... -....., *.-.--.*-. CI.1 AI-< "2. ..... .--. . .  ,,'. ... ,, L... -._. . -.. .^, ~ . . . . . .  * _",_. . .  .,_,_/ .... ~ . . .  

9 4 - .00291 
5 2  

> o  

> o  

a. 

b. 

With symmetrization t h i s  value reduces t o  % = -0.0375 a t  a = 0.25. 

This number is  inferred by extrapolation from the values of E D' 
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Table N: The ef fec t  of varying v in Y 
W 

N 

8 

9 

V 

8 

9 

10 

11 

9 

10 

11 

larest root 

- 00345 

-.00167 I 

- -00046 

+. 00015 

- .a1291 

-. 00292 

- .ooog8 

second root 

- -00141 
> o  

> o  

> o  

- -00141 
- .00014 

> o  
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